We consider an interacting particle system representing the spread of a rumor by agents on the d-dimensional integer lattice. Each agent may be in any of the three states belonging to the set {0,1,2}. Here 0 stands for ignorants, 1 for spreaders and 2 for stiflers. A spreader tells the rumor to any of its (nearest) ignorant neighbors at rate lambda. At rate alpha a spreader becomes a stifler due to the action of other (nearest neighbor) spreaders. Finally, spreaders and stiflers forget the rumor at rate one. We study sufficient conditions under which the rumor either becomes extinct or survives with positive probability.
展开▼